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Exciton capture by nanocrystals in a polymer matrix
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A model for the capture of nonequilibrium excitons by semiconductor nanocrystals in a polymer
matrix via dipole–dipole interactions is developed. The transition probabilityW is found by
calculating Joule energy losses in the nanocrystal induced by an external oscillating dipole. To find
the net capture rate, the problem is solved simultaneously with the diffusion equation describing
generation and recombination of excitons in the polymer matrix and their transport to the
nanocrystal interface. In real conducting polymers the capture rate is often limited not by dipole
interactions but by diffusion transport so that the key condition for high efficiency of light-emitting
devices based on organic–inorganic nanocomposites is that the diffusion length of excitons in the
polymer matrix exceeds the average internanocrystal spacing. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1599974#
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I. INTRODUCTION

Capture of nonequilibrium carriers by nanocrysta
~NCs! which plays a decisive role in NC-based light-emittin
structures, is usually described in terms of multiphonon se
rate capture of electrons and holes. This approach fails in
polymer–nanocrystal composites widely used in recent ye
for photonic devices.1 Excitations created by optical or elec
trical pumping in the polymer matrix exist, as a rule, in t
form of Frenkel excitons, rather than free electron–hole p
and one of the most important mechanisms of carrier cap
by a NC is the Fo¨rster one, which is the energy transfer fro
one system~in our case the Frenkel exciton in a polymer! to
another~electron–hole pair in a NC! via dipole–dipole exci-
tation. An alternative mechanism—separate capture of e
tron and holes—may be much weaker due to rather la
binding energy of Frenkel excitons, typically 0.2–0.4 eV2

The Förster capture may be of a special importance if
take into account that in most polymer-based composi
embedded NCs are passivated by ligand molecules crea
an additional shell, which inhibits direct capture of carrie
The present communication is devoted to a theoretical
scription of the capture of nonequilibrium Frenkel excito
created in a polymer matrix by semiconductor NCs—
process which ultimately determines the quantum yield
polymer-semiconductor light-emitting devices.

II. TRANSITION PROBABILITY FOR A SINGLE
NANOCRYSTAL

We consider a spherical semiconductor NC with radiua
and a Frenkel exciton at the pointre (ureu.a) in a polymer

a!Author to whom correspondence should be addressed; electronic
shik@ecf.utoronto.ca
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matrix and calculate the probability of exciton recombinati
with simultaneous generation of an electron–hole pair~or a
Wannier–Mott exciton! in a NC via electrostatic interaction
Our theoretical approach is similar to that developed in Re
3 and 4 for the reciprocal problem of energy transfer from
semiconductor quantum well or dot to a polymer matrix. T
corresponding probability can be expressed in terms of c
sical Joule losses

W5
1

2p\ E Im e~r ,v!uE~r !u2d3r . ~1!

HereE~r ! is the electric field of an external dipole with th
frequencyv in the medium to which energy is to be tran
ferred, e~r ,v! is the dielectric function of this medium an
integral is taken over its volume. In spite of the seeming
classical character of Eq.~1!, it is an exact expression i
e~r ,v! is taken from strict quantum mechanical calculatio
considering all possible electron transitions at the freque
v and is equivalent to calculations of the corresponding tr
sition probabilities~see Refs. 3 and 4!. In cited articles de-
voted to energy losses by quantum wells or dots, the role
the energy recipient medium was played by the matrix
that e~r ,v! refers to the polymer and the integration cover
the whole matrix. In our case, energy is transferred to the
and the integration region is the spherer ,a. The situation is
quite opposite to that of Refs. 3 and 4 and we are no lon
interested in dielectric properties of a polymer. The ene
recipient medium is now the NC so that the functione~r ,v!
is determined by its energy spectrum and electron and h
wave functions.

Generally speaking, the energy spectrum of an ideal
is purely discrete and the frequency dispersion of Ime con-
sists of a series ofd peaks. Since the Frenkel exciton is al
characterized by a fixed discrete energyEF (v5EF /\), we
il:
6 © 2003 American Institute of Physics
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can expect that the electron transition we are intereste
can occur only at resonance whenEF coincides with a gap
between some electron and hole states or correspon
Wannier–Mott exciton energies in NC. Such coinciden
~assumed also in Ref. 5! occurs only occasionally, so that fo
most ideal NCs the Fo¨rster-type transitions are impossible.
other words, dependence of the transition probability on s
tem parameters~e.g., on the NC radiusa! should represent a
system ofd peaks. However, in real systems such reson
behavior may not be observed. If the difference in ene
gaps between a polymer and a semiconductor is large,
energyEF for a moderately sized NC will lie far above th
ground state of an electron–hole pair~or Wannier–Mott ex-
citon!, close to the states with large quantum numbers. Th
states in ideal NCs are highly degenerate but any devia
from ideal spherical shape in real structures will remove t
degeneracy creating instead a number of quasi-continu
levels. Furthermore, inevitable dispersion of NC size w
additionally broaden any spectral dependence observed
macroscopic sample. It is also worth adding that, due to
relatively low electron affinities in most conducting pol
mers, the band diagram of polymer–semiconductor interf
often represents the so-called type-II heterostructure wh
NC is a potential well for electrons but a barrier for holes.1 In
this case the hole spectrum in NCs is continuous and Fo¨rster
transitions are always possible.

All of the mentioned arguments suggest that neglect
the detailed quantum structure of the energy spectrum
ity
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NCs may result in a reasonable, at least qualitatively,
scription of the Fo¨rster mechanism in real structures with n
extremely small NCs. For further analytical calculations w
will use e~r ,v! for bulk semiconductors and containing n
coordinate dependence. For exact quantitative results
can use the dielectric functions obtained by numeri
simulation6 for particular quantum dots.

In the above-mentioned continuous approximation, E
~1! is simplified. Using the connection between Ime~v! and
the optical absorption coefficienta~v!, we have

W5
nrca~v!

2p\v E uE~r !u2d3r , ~2!

wherenr is the NC refractive index. Thus for calculations
the Förster transition rate we need the spatial distribution
electric field created in the NC by a single Frenkel exciton
the immediate vicinity of it. To obtain a simple analytic
formula, we ignore for the time being the difference in p
larizability between the NC and the matrix, describing the
by the same effective real dielectric constante0 ~this ap-
proximation also implies Ime!e0). This allows us to ignore
the image forces and to write for a dipoled at the origin, the
squared electric field in the pointR as E25(1
13 cos2 Q)d2/e0

2R6, whereQ is the angle betweend andR. If
the dipole is located at the point with polar coordinat
(r e,0,0) and oriented along the polar direction (ue,0), then at
an arbitrary point (r ,u,f)
E2~r ,u,f;r e ,ue!5
d2$r 21r e

222rr e cosu13@cosue~r cosu2r e!1r sinue sinu cosf#2%

«0
2~r 21r e

222rr e cosu!4
. ~3!
-
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Substituting Eq.~3! into Eq. ~2!, integrating over the whole
NC volume, and averaging over the dipole orientationue ,
we obtain the resulting formula for the transition probabil

W5
4nrca~v!d2a3

3\v«0
2~r e2a!3~r e1a!3

. ~4!

To estimateW given by Eq.~4!, we assumed51 D unit
(10218 CGSE!, nr53, «055, a5105 cm21, and\v52 eV.
The value ofW increases dramatically when the position
the Frenkel excitonr e approaches the NC surface. For es
mates, we assume a minimal possible value ofr e2a to be of
the order of interatomic distance in the polymerap . Taking
ap50.5 nm, we obtain for the maximal transition probabili
W;1.531011s21 ~transition time;7 ps!. Note that in the
limit r e2a!a, when W is maximal, the answer does no
depend on the NC sizea and is inversely proportional to th
cube of distance between the exciton and NC surfaceW
;(r e2a)23. This asymptotic answer could be also obtain
by replacing NC with an infinite semispace, which is po
sible due to the very fast decrease ofE2 with distance.

The formula Eq.~3! ignores modification of the dipole
potential by the difference of polymer and semiconduc
-

d
-

r

dielectric constants,«1 and«2 . In our system with a spheri
cal dielectric nonuniformity this modification consists in th
appearance of image charges so that the potential of a ch
or a dipole is given by an infinite series.7 The situation is,
however, simplified for the case of NCs noticeably larg
thanap . In this case, the NC interface can be approxima
by a plane and the potential of a dipole beyond the interf
coincides with that in uniform medium with the dielectr
constant («11«2)/2. Thus the capture probability is de
scribed, as before, by Eq.~4! with the replacemente0→(e1

1«2)/2.

III. NET CAPTURE RATE

The knowledge of the transition probability Eq.~4! and
its dependence on exciton distance from the NC cen
W(r e) allows us to find the net rate of carrier capture by N
A complete description of the process must include gene
tion of excitons in the polymer, their diffusion towards NC
partial recombination in the matrix, and capture by NCs. T
specific feature of the Fo¨rster capture@Eq. ~4!# is its very
strong distance dependence so that atr e2a exceeding sev-
eralap , W becomes negligibly small. For this reason, we c
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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analyze the processes in the polymer matrix considering
capture as a phenomenon occurring almost directly at the
interface and described by some effective surface recom
nation rates. To obtain the expression fors, we note that if
the exciton density in the vicinity of a NC isn, then the total
rate of exciton capture is

dn

dt
54pnE

a1ap

`

W~r e!r e
2dre.

pnnrca~v!d2a2

3\v«0
2ap

2
. ~5!

The recombination fluxj r5(4pa2)21(dn/dt) and hences,
representing the proportionality factor betweenj r and n, is
equal to

s5
nrca~v!d2

12\v«0
2ap

2
. ~6!

To describe the behavior of Frenkel excitons in the m
trix, we find the radial distribution of their densityn(r ) (r
.a is measured from the NC center! from the continuity
equation

D
d

r 2dr
S r 2

dn

dr D5
n

t
2G, ~7!

whereG, D, andt are the generation rate, the diffusion c
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efficient, and the lifetime of Frenkel excitons in a bulk pol
mer. One of the boundary conditions to Eq.~7! describes the
capture

D
dn

dr
~a!5sn~a!. ~8!

The other condition will be obtained by the approach simi
to that used for description of nonequilibrium carriers in t
low-temperature grown GaAs with arsenic clusters.8 We as-
sume that NCs form a periodic lattice with unit cells center
by a NC. By symmetry, the diffusion flux must vanish at t
cell boundaries. By analogy with the Wigner–Seitz meth
of band structure calculations, we replace the unit cell b
sphere with radiusR05@3/(4pN)#1/3 ~N is the NC density!,
which results in the boundary condition

dn

dr
~R0!50. ~9!

With Eqs.~8! and ~9! we find the distributionn(r ) and,
particularly, the value ofn(a) determining the capture rat
by a NC. We present the final expression for the quant
yield h representing the fraction of all nonequilibrium exc
tons captured by NCs
h5
4pa2sn~a!

4p

3
~R0

32a3!G

5
3z

y~x321!
•F ~xy11!~y21!exp@2y~x21!#2~xy21!~y11!exp@y~x21!#

~xy11!~y212yz!exp@2y~x21!#2~xy21!~y111yz!exp@y~x21!#G ;
~10!

L5ADt, x5
R0

a
, y5

a

L
, z5

sL

D
5sA t

D
.

ive

–
ure
containing three dimensionless parameters:x, y, z. The first
of them characterizes the NC density~the relative volume
occupied by NCs is 4pNa3/3[x23), y describes the prop
erties of the matrix, whilez is proportional tos and is the
measure of the capture efficiency.

Let us discuss the requirements for these parameter
curing high values ofh. The question has a high applie
se-

importance since, due to a large quantum yield of radiat
recombination in semiconductor NCs~considerably higher
than in a polymer matrix!, largeh is a condition of a notice-
able increase of the light emitter efficiency in organic
inorganic nanocomposites, as compared to that in a p
polymer. We note first of all thath increasing withz, satu-
rates at the value
h`5
3

y2~x321!
F ~xy21!~y11!exp@y~x21!#2~xy11!~y21!exp@2y~x21!#

~xy21!exp@y~x21!#1~xy11!exp@2y~x21!# G , ~11!
tes

er-

n-
which at largexy5R0 /L is considerably less than 1. Th
reflects the fact that at larges, the factor restricting NC cap
ture is not the capture itself but the exciton diffusion to t
NC surface andh is determined by the interplay betwee
diffusion and recombination in the matrix. To acquire hi
values ofh, the sample must have not only effective Fo¨rster
capture~larges! but also high enough diffusion length in th
matrix, exceeding the NC separation. Quantitative estima
should answer two questions:~i! what values ofs are high
enough to use the asymptotic expression Eq.~11! and ~ii !
what are the requirements for the polymer matrix guarante
ing the corresponding values ofh` to be close to unity.

We begin with the second question. Figure 1 demo
strates the values ofx and y corresponding toh`50.8. To
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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obtain higherh` , the x and y values should lie below the
curve. Since for a fixedx ~given NC density!, h` is deter-
mined by one single parametery5a/L, small NCs are pref-
erable for reaching highh. We take for estimates the value
L.5 nm, D.231024 cm2/s experimentally determined fo
the PPV polymer.9 We see that forx52 ~12% volume of
NCs!, one can reachh`50.8 only for a,3 nm while forx
55 ~1% volume of NCs! the estimate givesa,0.5 nm,
which corresponds to a single interatomic distance and he
cannot be realized in a polymer with the given diffusi
lengthL.

It can be easily shown from the general formula Eq.~10!
that for thex andy corresponding to Fig. 1,h` approximates
the real valueh with the 10% accuracy~in other words,
h*0.7! if z*10 ~at x52) or z*30 ~at x55). For theL and
D given above, it givess*103 cm/s. Using the same value
of parameters as in our previous estimates, we obtain f
Eq. ~6! values ofs several times larger. Thus, in most cas
the main hurdle to high efficiency NC capture might be c
ated not by weakness of dipole–dipole interaction but by l
values of the exciton diffusion length in a polymer.

In this connection we point at a number of works whe
the values ofL in polymers noticeably exceeding 5 nm~used
in our estimates! were observed.10–13 It allows us to look
optimistically at the prospects of obtaining high quantu
yield luminescence in organic–inorganic nanocomposites

We emphasize once more that the capture probability
~4! depends drastically on the minimal exciton NC distan
ap . Our estimateap;0.5 nm assumes direct polymer

FIG. 1. Relationship between dimensionless nanocomposite parametx
andy corresponding to a capture efficiencyh`50.8. The region below the
curve corresponds to structures with higher efficiencies.
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nanocrystal contact while in many real composites NCs
protected by a layer of ligands suppressing surface recom
nation, which may increase effectiveap up to 2–10 nm~de-
pending on the length of ligand molecules! and suppress the
capture efficiency. This agrees with the experimentally o
served dependence of the electroluminescence intensit
PbS/polymer nanocomposites on the length of ligand cha14

and clearly displays the necessity of optimization the liga
material in light-emitting nanocomposites.

IV. CONCLUSION

To summarize, we have considered capture of n
equilibrium excitons by semiconductor NCs in a polym
matrix via dipole–dipole~Förster! mechanism, which ulti-
mately determines the efficiency of nanocomposite-ba
light emitters. The capture is a two-stage process includ
direct energy exchange between Frenkel excitons in a p
mer and electron–hole pairs in NCs and diffusion delivery
excitons to the surface of NCs where this energy exchang
effective. Estimates show that in most real cases the bo
neck determining the net capture probability is related to
exciton diffusion. Thus high efficiency of capture and hen
high quantum yield of light emission from NCs can b
achieved by using polymers with high enough exciton dif
sion length and minimizing the inter-NC separation, whic
in turn, requires a suitably small size and high density
NCs.
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