Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption

Xueli Zheng1,2, Bo Zhang1,3†, Phil De Luna4†, Yufeng Liang5, Riccardo Comin1, Oleksandr Voznyy1, Lili Han2,6,7, F. Pelayo García de Arquer1, Min Liu1, Cao Thang Dinh1, Tom Regier6, James J. Dynes8, Sisi He3, Huolin L. Xin6, Huisheng Peng3, David Prendergast6, Xiwen Du2 and Edward H. Sargent1*

The efficiency with which renewable fuels and feedstocks are synthesized from electrical sources is limited at present by the sluggish oxygen evolution reaction (OER) in pH-neutral media. We took the view that generating transition-metal sites with high valence at low applied bias should improve the activity of neutral OER catalysts. Here, using density functional theory, we find that the formation energy of desired Ni4+ sites is systematically modulated by incorporating judicious combinations of Co, Fe and non-metal P. We therefore synthesized NiCoFeP oxohydroxides and probed their oxidation kinetics with in situ soft X-ray absorption spectroscopy (sXAS). In situ sXAS studies of neutral-pH OER catalysts indicate ready promotion of Ni4+ under low overpotential conditions. The NiCoFeP catalyst outperforms IrO2 and retains its performance following 100 h of operation. We showcase NiCoFeP in a membrane-free CO2 electroreduction system that achieves a 1.99 V cell voltage at 10 mA cm−2, reducing CO2 into CO and oxidizing H2O to O2 with a 64% electricity-to-chemical-fuel efficiency.

Electrochemical reduction of CO2 to value-added fuels seeks to reduce the present-day dependence on legacy fossil fuels and thereby mitigate net CO2 emissions1–4. In electrochemical CO2 reduction, the use of neutral-pH aqueous electrolyte is desired because it provides the highest CO2 solubility while suppressing the undesired competing hydrogen evolution reaction.

Unfortunately, in pH-neutral electrolytes, the overpotential of the anodic oxygen evolution reaction (OER) is, in the best catalysts reported so far, very high (>460 mV at 10 mA cm−2)5,12. This limits the electrical-to-chemical power conversion efficiency of the overall reaction. To improve the energy efficiency of CO2 conversion, efforts have been made to provide CO2 reduction in neutral media while operating OER in alkaline electrolyte. However, the effective overpotential remains high (>430 mV) due to the additional energy needed to overcome the effect of pH gradients5,12, that is, the need also to overcome the membrane potential. Breakthroughs in low-overpotential, stable and earth-abundant OER catalysts that operate optimally at neutral pH are therefore urgently needed to complement rapid advancements in CO2 reduction electrocatalysts.

High-valence transition-metal (TM) ions incorporated into metal oxides are known to achieve a high reactivity towards water oxidation5,10–15. However, as highlighted by their Pourbaix diagrams, TM ions prefer to take on low-valence oxidation states at neutral pH5,16–18. We thus adopted a new strategy, one in which we would seek to minimize the energy (formation energy) required for active metal sites to reach the desired high oxidation state at neutral pH5,12. We hypothesized that a low active-site formation energy would correlate well with a low overpotential to achieve a high-turnover-frequency activated state.

We focused on the well-known Ni2+→Ni4+ earth-abundant catalyst5,12,18. We sought to challenge our posited correlation experimentally, pursuing in situ monitoring of the oxidation state of the OER catalyst. Multi-metal oxides based on Co, Fe and Ni often outperform unary metal oxides due to modulation of their electronic properties and the resultant fine-tuning of the adsorption energies of the reaction intermediates10,19,25,26. Concomitantly, cobalt-phosphate compounds exhibit high activity at neutral pH5,11,26. We reasoned that phosphate could help promote the TM to high valence states and that the catalytic activity of promising multi-metal oxides (that is, 3d metals) could be further enhanced if their 3d electronic structures were systematically and rationally modulated by incorporating multi-metal and non-metal modulators5,19,25,26.

We therefore explored combinations of elements incorporated into Ni oxides in an atomically intimate manner19, seeking the ready formation of Ni4+ with the goal of improving the catalytic activity of the material. We synthesized NiCoFeP oxohydroxides and probed their oxidation kinetics using in situ soft X-ray absorption spectroscopy (sXAS). The new NiCoFeP catalysts exhibit exceptional OER performance, with a 330 mV overpotential at 10 mA cm−2 and 3.3 V cell voltage in CO2-saturated 0.5 M KHCO3 electrolyte. The new catalyst outperforms the leading precious metal oxide IrO2 and retains its performance after 100 h of operation. We then combined the

1Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada. 2Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China. 3State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China. 4Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E4, Canada. 5The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. 6Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA. 7Center for Electron Microscopy, TUT-FEI Joint Institute Laboratory, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China. 8Canadian Light Source, Inc. (CLS), 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2V3, Canada. 9These authors contributed equally to this work. *e-mail: ted.sargent@utoronto.ca; bozhang@fudan.edu.cn

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
optimal multi-metal oxide with a gold nanoneedle CO2 reduction catalyst to assemble an electrolyzer system that converts CO2 and H2O into CO and O2. We found that the new system operated at a low cell voltage of 1.99 V and recorded an electricity-to-chemical-fuel efficiency of 64%.

Results and discussion

Theoretical studies. We began by carrying out computational studies aimed at understanding the effect of intimate metal and phosphorous doping on the stability of nickel structures with different valences. Density functional theory (DFT) calculations with on-site Hubbard-like corrections (DFT + U) were performed on model Ni(OH)2, β-NiOOH and NiO2 structures (doped with Co, Fe and P) to model Ni^{2+}, Ni^{3+} and Ni^{4+} oxidation states, respectively (see Supplementary Table 1 for the optimized lattice constants). Experimentally, the NiO2 phase is unstable and does not exist in the Ni Pourbaix diagram; simulations reproduce this observation, showing that NiO2 formation is unfavourable by 0.31 eV per formula unit (f.u.).

However, once NiO2 is doped with phosphorus or other metals, the formation energies become negative, indicating a more stable phase (Supplementary Table 2). The simulations thus suggest that doping using Co, Fe and P can lower the Gibbs formation energy of compounds containing Ni^{4+} that are otherwise unstable.

The oxidation of Ni^{2+} to Ni^{4+} comprises the following proton-coupled electron transfer reactions37:

\[
\text{Ni(OH)}_2 \rightarrow \text{NiOOH} + \text{H}^+ + e^- \tag{1}
\]

\[
\text{NiOOH} \rightarrow \text{NiO}_2 + \text{H}^+ + e^- \tag{2}
\]

We found that substitutional doping of nickel to phosphorus consistently lowered the Ni^{2+}→Ni^{3+} reaction free energies, while substitution of Ni with Co and Fe lowered the Ni^{3+}→Ni^{4+} reaction free energies (Fig. 1). Phosphorus, which prefers a fourfold coordination, affects nearby hydrogen geometries and induces steric strain into the lattice, resulting in destabilization of the Ni(OH)2 phase. Moreover, Co and Fe in ternary blends modulate the electronic structure of the nickel oxides, stabilizing the Ni^{4+} phase.

To investigate the modulation of electronic structure with respect to TM doping, we carried out a density of states (DOS) analysis. It was found that the valence band maximum (VBM) was only 0.17 eV below the Fermi level for NiO2, but for Ni(OH)2 it was 0.20 eV below the Fermi level. This suggests that the Ni^{4+} shifts the Fermi level down compared to Ni^{2+} to expose hole states for catalysis38. From a DOS comparison of NiO2 and Ni_{3−x}Co_{1−x}Fe_{x}O_{2}, we found that the NiCoFe oxide introduces more d states within the gap than pure NiO2 (Supplementary Fig. 1). A projected DOS (pDOS) analysis (Supplementary Fig. 2) revealed that electronic states near the Fermi level are predominantly from Ni and Fe 3d orbitals, suggesting that both Fe^{3+} and Ni^{4+} can act as catalytic active sites, as they each contribute states near the valence band-edge39.

Oxidation-state changes monitored by in situ sXAS. To challenge, experimentally, the concept that low formation energy could correlate with an early voltage onset of efficient OER, we sought a means to track the electronic states of metal sites in situ. Hard X-ray absorption spectroscopy (hXAS) has previously been used in situ to probe high-energy transitions between 1s and 4p electronic orbitals and is more relevant to local coordination environments. The electronically relevant 3d final state is weakly evident in hXAS as a low-intensity pre-edge feature resulting from quadrupole transitions30. For this reason, the hXAS pre-edges do not enable an informative determination of the narrowband, TM 3d electronic structure. Real-time tracking of the X-ray absorption near-edge region of the Ni K-edge was used to obtain initial information about their valence states and electronic configurations31.

We turned instead to sXAS at the TM L2,3-edges, which accurately and efficiently quantifies the TM oxidation states because these dipole-allowed 2p→3d optical transitions probe directly the 3d states that are crucial to chemical activities. It provides detailed information on the local electronic structure and is sensitive to chemical bonding and oxidation states32–37. sXAS measurements were performed by recording the partial fluorescence yield (PFY) intensity. The spectra are not strictly proportional to the X-ray attenuation coefficient due to state-dependent decay probabilities32. These electron delocalization effects are known to enhance the fluorescence intensities of the higher-energy transitions in an L-edge PFY spectrum. We considered these effects in our interpretation of the in situ measurements. We concluded that the magnitude of the bias-dependent changes we observed was much greater than the small effects arising due to state-dependent decay35.

One challenge in using sXAS to study in situ operating OER catalysts arises from its limited probe depth. sXAS does not reveal the (remote, far-side) active surface behaviour of an operating catalyst when excited and probed through a window and substrate (Fig. 2). We therefore synthesized highly nanoporous NiCoFeP...
samples in the expectation that the electrolyte used in OER might substantially penetrate into them. We employed an in situ electrochemical flow cell with an ultrathin Si₃N₄ membrane window (100 nm thick) to separate the liquid medium inside the cell from the high-vacuum environment needed for soft X-ray measurements (Fig. 2a). The working electrode for loading catalysts consisted of an ∼20 nm Au film evaporated on the internal side of a Si₃N₄ membrane, in contact with a flowing CO₂-saturated 0.5 M KHCO₃ solution as the electrolyte. Scanning transmission electron microscopy (STEM) images of NiCoFeP reveal a structure composed of nanosheets and nanopores (Fig. 2b).

To understand the changes in the Ni L-edge, we carried out first-principles calculations, solving the Bethe–Salpeter equation (BSE) for correlated electrons and holes with the goal of predicting theoretical sXAS spectra with the aid of the OCEAN simulation package. The BSE is capable of reproducing the branching ratio of the L₃/L₂-edges correctly, together with the edge shift, in different chemical environments or oxidation states. To reproduce multiplet effects, we also performed an atomic configuration calculation with the CTM4XAS code (downloadable from http://www.anorg.chem.uu.nl/CTM4XAS) (Fig. 3a). The magnitude of the crystal field splitting was chosen to be 2.0 eV, which was estimated from the DFT + U calculation for the layered Ni(OH)₂ structure. With the multiplet effects included, the simulated spectrum of Ni²⁺ is in excellent agreement with experiments.

As a result of 2p core hole spin–orbit splitting, both the experimental and theoretical Ni L-edge XAS spectra (Fig. 2c) are divided into two regions of interest: the L₁-edge near 856 eV and the L₂-edge near 874 eV. High-resolution sXAS spectra can also resolve the fine multiplet structure arising from Ni 2p–3d interactions and crystal field effects from the modulated local coordination environment. We first measured the Ni L-edges using PFY on samples prepared ex situ, and observed no difference compared to open-circuit potential conditions (Fig. 2d). We then acquired PFY at the Ni L-edge, with a probe depth of ∼300 nm, collecting real-time spectra while applying a constant anodic bias of +1.6 V, +1.8 V and +2.0 V versus RHE (reversible hydrogen electrode), respectively (Supplementary Fig. 12).

To understand the changes in the Ni L-edge, we carried out first-principles calculations, solving the Bethe–Salpeter equation (BSE) for correlated electrons and holes with the goal of predicting theoretical sXAS spectra with the aid of the OCEAN simulation package. The BSE is capable of reproducing the branching ratio of the L₃/L₂-edges correctly, together with the edge shift, in different chemical environments or oxidation states. To reproduce multiplet effects, we also performed an atomic configuration calculation with the CTM4XAS code (downloadable from http://www.anorg.chem.uu.nl/CTM4XAS) (Fig. 3a). The magnitude of the crystal field splitting was chosen to be 2.0 eV, which was estimated from the DFT + U calculation for the layered Ni(OH)₂ structure. With the multiplet effects included, the simulated spectrum of Ni²⁺ is in excellent agreement with experiments.

These in situ sXAS studies provide the first direct view of Ni⁴⁺ as it forms during the operation of oxyhydroxide catalysts during water oxidation. We performed NiO (Ni²⁺), LiNiO₂ (Ni³⁺) and potassium nickel(IV) paraperiodat K₂Ni(H₂IO₆)₂ (Ni⁴⁺) references at Beijing Light Source 4W1B beamline (Supplementary Fig. 4). We chose LiNiO₂ as our Ni³⁺ reference because it has a layered double hydroxide structure. We subtracted Ni²⁺ from the potassium nickel(IV)
paraperiodat K$_2$Ni(H$_2$IO$_6$)$_2$ (Ni$^{4+}$) reference and obtained a single-peak shape similar to our simulated spectra. The intensity ratio of 2.6 eV from Ni$^{2+}$ to Ni$^{4+}$ (dashed curves in Fig. 2c). Both the Ni and relevant controls.

We also acquired Ni in situ sXAS while varying the potentials for NiCoP (Supplementary Fig. 13) and NiP (Supplementary Fig. 14). The NiCoP sample exhibited a significantly lower Ni$^{4+}$/Ni$^{2+}$ ratio than the NiCoFeP sample at various potentials (Fig. 2e and Supplementary Fig. 13). In NiP, we detected no ostensible upon application of a potential, including only a modest admixture with Co$^{3+}$ in all samples (Supplementary Fig. 16).

We next proceeded to compare the catalytic performance of NiCoFeP with that of the reference samples NiP, NiCoP and IrO$_2$ for the OER. To increase the conductivity of the electrode, we loaded our catalysts on a gold-plated nickel foam. Representative OER currents were measured in CO$_2$-saturated 0.5 M KHCO$_3$ aqueous electrolyte at a scan rate of 1 mV s$^{-1}$ (Fig. 3a) (currents are uncorrected and thus are average value and the absolute error. d. Cell potential as a function of time for CO$_2$ electrolysis at a controlled current density of 10 mA cm$^{-2}$ (see Supplementary Fig. 22a for a scheme of NiCoFeP–Au needles electrolysis (black line) and Supplementary Fig. 22b for a scheme of FeCoW–Au needles with a bipolar membrane (red line)).

Water oxidation electrocatalysis. We next proceeded to compare the catalytic performance of NiCoFeP with that of the reference samples NiP, NiCoP and IrO$_2$ for the OER. To increase the conductivity of the electrode, we loaded our catalysts on a gold-plated nickel foam. Representative OER currents were measured in CO$_2$-saturated 0.5 M KHCO$_3$ aqueous electrolyte at a scan rate of 1 mV s$^{-1}$ (Fig. 3a) (currents are uncorrected and thus are already penalized by the effects of resistive losses incurred within the electrolyte).

The NiCoFeP-on-gold-plated Ni foam requires an overpotential of only 330 mV at 10 mA cm$^{-2}$ (Table 1, all current densities based on projected geometric area), which is 70 mV lower than that of the best commercial precious-metal-oxide IrO$_2$ catalyst tested under identical conditions. To the best of our knowledge, this is the first report of an earth-abundant catalyst that consistently outperforms precious-metal-oxide catalysts in a pH-neutral medium5,7 (Table 1). To evaluate the effect of surface area using an additional independent method, we analysed the surface area via the Brunauer, Emmett and Teller (BET) technique. This allowed us to report the normalized kinetic current density (referred to as ‘specific activity’) as a function of potential versus RHE to assess the intrinsic activities of the catalysts. Using this metric, the intrinsic activity of NiCoFeP oxyhydroxide was confirmed to be notably higher than that of the
controls (Supplementary Fig. 17). From BET, the high catalytic activity of NiCoFeP oxyhydroxide includes an appreciable intrinsic (not surface-area-related) contribution.

To assess the kinetic barriers involved in OER, we studied the effect of temperature on the performance of the catalysts (Fig. 3b and Supplementary Fig. 19). OER proceeds more rapidly at elevated temperature, with an exponential temperature dependence of the chemical rate constant. The electrochemical activation energies extracted from the slopes of the Arrhenius plots are lower for the new catalyst than for IrO₂ (Table 1 and Supplementary Fig. 16). The most active NiCoFeP catalysts in this study exhibit an apparent barrier value of 27 kJ mol⁻¹, indicating high catalytic activity.

Our studies suggest that developing a TM oxyhydroxide with lower Ni⁴⁺ formation energy provides an effective strategy and new avenue to enhance OER catalytic activity (Fig. 3c). To characterize the performance stability, we operated the OER catalyst on gold-plated Ni foam under a constant current density of 10 mA cm⁻² continuously for 100 h. We observed no appreciable increase in potential (Fig. 3d) over this time period. To verify that the catalyst remained physically intact, we checked using ICP-AES for any observable leaching of the constituents into the electrolyte. We were able to detect no measurable elemental loss using this sensitive method. Consistently high activity throughout the entire duration of stability testing was further confirmed by measuring the rate of O₂ evolution from the NiCoFeP-on-gold-plated Ni foam catalyst. We obtained quantitative (that is, unity Faradaic efficiency) gas evolution of oxygen to within our available ±5% experimental error. Our approach to minimize the formation energy required for active metal sites may also open up further avenues to other related oxidation reactions.

We next assembled an electrolyser that converts CO₂ and H₂O into CO and O₂ based on NiCoFeP oxyhydroxides as OER catalysts and recently reported Au nanoneedles as CO₂ reduction catalysts. We achieved a 1.99 V cell voltage at 10 mA cm⁻² for water oxidation (Supplementary Section 3. Schreier, M. Recycling of carbon dioxide to methanol and derived products. Nature 527, 7995–8004 (2015).

We achieved a 1.99 V cell voltage at 10 mA cm⁻² for water oxidation (Supplementary Section 3. Schreier, M. Recycling of carbon dioxide to methanol and derived products. Nature 527, 7995–8004 (2015).

The data supporting the findings of this study are available within this Article and its Supplementary Information files, or from the corresponding author upon reasonable request. The Supplementary Information contains descriptions of methods, and Supplementary Figs 1–29 present results and discussions, assessment of electronic structures, and DFT calculations.

Received 29 August 2016; accepted 29 September 2017; published online 20 November 2017

References

Table 1 | Comparison of catalytic parameters of NiCoFeP and controls.

<table>
<thead>
<tr>
<th>Samples</th>
<th>pH</th>
<th>On gold foam Overpotential (η) (mV) at 10 mA cm⁻²</th>
<th>On glassy carbon Overpotential (η) (mV) at 1 mA cm⁻²</th>
<th>On Au(TPP) (\Delta H) (kJ mol⁻¹) at η = 700 mV</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni₄P</td>
<td>7.2</td>
<td>547</td>
<td>390</td>
<td>54.14</td>
<td>This work</td>
</tr>
<tr>
<td>NiCoP</td>
<td>7.2</td>
<td>547</td>
<td>330</td>
<td>37.26</td>
<td>This work</td>
</tr>
<tr>
<td>NiCoFeP</td>
<td>7.2</td>
<td>330</td>
<td>276</td>
<td>27.00</td>
<td>This work</td>
</tr>
<tr>
<td>Commercial IrO₂</td>
<td>7.2</td>
<td>400</td>
<td>-</td>
<td>29.41</td>
<td>This work</td>
</tr>
<tr>
<td>IrO₂</td>
<td>7.2</td>
<td>460*</td>
<td>290*</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>MnO₂</td>
<td>7.5</td>
<td>-</td>
<td>417†</td>
<td>43</td>
<td>7</td>
</tr>
<tr>
<td>Ni-based</td>
<td>6.8</td>
<td>-</td>
<td>467</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Co-Pi</td>
<td>7.0</td>
<td>-</td>
<td>550†</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*Current density obtained on Ti plate. †Current density obtained on a conductive glassy substrate.

Methods

Energetics calculations. The bulk energetics of metal- and phosphorous-doped Ni-oxides were calculated using DFT with the Hubbard–U framework (DFT + U) to account for the strongly localized d electrons for Ni, Fe and Co. The Perdew–Burke–Ernzerhof (PBE) exchange-correlation functional and Blöchl’s all-electron, frozen-core, projector augmented (PAW) method with a plane-wave basis set cutoff value of 750 eV were used with the Vienna Ab-initio Simulation Package (VASP). The Gibbs free energy of formation, \(\Delta G_f \), was calculated using the framework of Persson et al. where the reference energies are taken from the most stable phase of each element.

For full details see Supplementary Section ‘Structures of models used’.

Synthesis of gelled NiCoFeP oxyhydroxides and controls. All gelled oxyhydroxides were synthesized using a modified aqueous sol–gel technique: (in situ X-ray absorption. X-ray absorption measurements at the Ni, Co and Fe L-edges were performed at the Spherical Grating Monochromator (SGM) beamline 11ID-1 at the Canadian Light Source. The window of the sample cells was mounted at an angle of roughly 45° with respect to both the incident beam and the detectors. The bodies of the sample cells were fabricated on an Object Connex500 printer by three-dimensional printing with DurusWhite material. The catalysts were coated on the windows via dropcasting with a thickness of 400 nm. The gold-covered window was contacted by gold wires. Silver and platinum wires were used as reference and counter electrodes. All measurements were made at room temperature in fluorescent mode using Amtrek silicon drift detectors (SDDs) with 1,024 emission channels (energy resolution ~120 eV). Four SDDs were used simultaneously. The scanning energy ranges of Ni, Co and Fe L-edges were set between 840 and 900 eV, 760 and 820 eV, and 690 and 750 eV, respectively. The PFY was extracted from all SDDs by summation of the corresponding metal L, emission lines. For full details see Supplementary Figs 12–16.

L-edge simulation of XAS with the OCEAN code. The formalism of the BSE is provided in ref. 38. The input DFT + U calculations were performed using norm-conserving pseudopotentials. A very large energy cutoff of 160 Ryd was used for the plane-wave basis set of the Kohn–Sham wavefunctions. The key part of the electron-core–hole interactions is the screened Coulomb interaction, which is obtained within the random phase approximation. A large number of empty bands up to 50 eV above the Fermi level were included in the calculations. A 6 x 6 x 6 k-grid over the Brillouin zone was used to produce the xXAS spectra, which were convoluted with Lorentzians of 0.5 eV.

Electrochemical measurements. Electrochemical measurements were performed using a three-electrode system connected to an electrochemical workstation (AutoLab PGSTAT302N). Cyclic voltammetry (CV) measurements at 50 mV s⁻¹ were performed for three cycles before recording linear scan voltammetry (LSV) at 1 mV s⁻¹ for each sample. The LSV performance of NiCoFeP, NiCoP, Ni₄P and the corresponding controls with no phosphorus were also normalized by the BET surface area. The apparent electrochemical activation energy (\(E_a \)) for water oxidation was determined using the Arrhenius relationship. Calibrations of the Ag/AgCl reference electrode and Ag wire reference electrode were conducted in the standard three-electrode system (the same system as that for performance measurements) as reference electrodes, using Pt foil as the working and counter electrodes. For full details see Supplementary Figs 17–20.

Electrochemical measurements. Electrochemical measurements were performed using a three-electrode system connected to an electrochemical workstation (AutoLab PGSTAT302N). Cyclic voltammetry (CV) measurements at 50 mV s⁻¹ were performed for three cycles before recording linear scan voltammetry (LSV) at 1 mV s⁻¹ for each sample. The LSV performance of NiCoFeP, NiCoP, Ni₄P and the corresponding controls with no phosphorus were also normalized by the BET surface area. The apparent electrochemical activation energy (\(E_a \)) for water oxidation was determined using the Arrhenius relationship. Calibrations of the Ag/AgCl reference electrode and Ag wire reference electrode were conducted in the standard three-electrode system (the same system as that for performance measurements) as reference electrodes, using Pt foil as the working and counter electrodes. For full details see Supplementary Figs 17–20.

Received 29 August 2016; accepted 29 September 2017; published online 20 November 2017

References
ARTICLES

